Geometric Gravity Solver

Fixed parameters. Reproducible results.
🔒 Global Parameter Set:
Solver Version:
1. Baryon Newtonian 2. + m1 (lopsided) 3. + m2 (spiral) 4. + bar 5. + toroidal 6. + Mode III (global, conditional) → RFT
Load a galaxy to begin.
Overlay: Observed vs. Geometry‑only (RFT) vs. Baryon‑Newtonian.
Reproduce this run (bundle + CLI):

      
How this works (short explainer)

Goal: Test a geometry‑only gravity model on real galaxies without per‑galaxy tuning.

Inputs: A galaxy JSON (radius grid r, observed speeds v_obs, errors σ, baryon profiles) and a locked global parameter set.

Model: We compose fixed geometry modes (m=1, m=2, bar, toroidal) with a baryon‑only Newtonian baseline. The rotation‑speed model is built as a quadratic sum of component contributions: v_model(r)^2 ≈ v_baryon(r)^2 + Σ v_mode_i(r)^2. Mode amplitudes/relations come from the global set; there are no galaxy‑specific sliders.

Metrics: Residuals Δv = v_obs − v_model; χ²/DoF with Gaussian σ; AIC/BIC for parsimony; a ripple check looking for predicted oscillatory signatures in the residuals.

Falsifier: The claim is considered challenged if the residual envelope is breached in adjacent bins, if χ²/DoF is too large, or if residuals lack the expected ripple band. Thresholds are published and reproducible.

Reproducibility: The header shows the hash of the exact parameter file and the solver version. The Share and Download actions package everything needed to recreate the plots.

Show the math
v_{RFT}^2(r) = v_{bar}^2(r) + \sum_k v_k^2(r)\\ \chi^2 = \sum_{i\in M} \left(\frac{\Delta v_i}{\sigma_i}\right)^2,\ \ \sigma_i^2 = \sigma_{i,obs}^2 + \sigma_0^2\\ \mathrm{AIC} = \chi^2 + 2K,\ \mathrm{BIC} = \chi^2 + K\ln N,\ (K=0) \\ v_{\mathrm{ModeIII}}^2(r) = V_{\mathrm{res}}^2\, S(r; R_{\mathrm{blend}}, w),\ \ V_{\mathrm{res}}^2 = \frac{\sqrt{G\,M_b\,a_{\mathrm{res}}}}{(1000)^2}