Why Quantum in RFT?

  • RFT unifies quantum mechanics with gravity by showing both emerge from the same geometric structure—the scalaron-twistor resonance
  • Instead of quantizing classical fields, RFT derives quantum behavior from the fundamental discreteness of twistor space
  • The Standard Model gauge groups and particle spectrum arise naturally from the index-3 twistor bundle structure
RFT 15.1

Twistor Quantization & Standard-Model Emergence

Key Results:

  • Penrose–Ward path-integral derivation in CP³ twistor space
  • Automatic emergence of SU(3)×SU(2)×U(1) from index-3 bundle
  • Three fermion families from topological winding numbers
  • Higgs mechanism as twistor bundle reduction

Core twistor quantization:

$$\mathcal{Z} = \int_{\mathbb{CP}^3} \mathcal{D}\omega^{(0,2)} \exp\left[\frac{i}{\hbar}\int_{\mathbb{CP}^3} \omega \wedge H_{\text{tw}}\right]$$

Gauge group emergence:

$$G_{\text{SM}} = \frac{\text{Aut}(\mathcal{E}_3)}{\text{Stab}(\phi_0)} \cong SU(3) \times SU(2) \times U(1)$$
Read Full PDF DOCX source
RFT 15.2

Matrix–Scalaron Quantum Gravity & Emergent Spacetime

Key Results:

  • Spectral-triple → classical manifold emergence proof
  • Einstein equations from scalaron condensate dynamics
  • Resolution of cosmological constant problem via self-tuning
  • Black hole microstates as matrix configurations

Matrix action:

$$S_{\text{matrix}} = \text{Tr}\left[\frac{1}{2}[D_\mu, \Phi][D^\mu, \Phi] + V(\Phi) + \Phi J_{\text{tw}}\right]$$

Emergent metric:

$$g_{\mu\nu} = \lim_{N \to \infty} \frac{1}{N}\text{Tr}[\gamma_\mu, \Phi][\gamma_\nu, \Phi]$$
Read Full PDF DOCX source

Coming Next in the Quantum Programme

Building on these foundations, upcoming papers will explore quantum computing implementations of RFT dynamics, experimental tests via cavity QED systems, and connections to quantum information theory through twistor entanglement.